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(57) ABSTRACT

Described are a system and method for identifying a material.
A spectrum is received. A barcode is generated from a sign of
a second derivative of the spectrum. Multivariate data analy-
sis tools and techniques are applied based on the barcode. The
material is identified from results of the multivariate data
analysis based on the barcode.
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1
SYSTEMS AND METHODS FOR
IDENTIFYING MATERIALS UTILIZING
MULTIVARIATE ANALYSIS TECHNIQUES

RELATED APPLICATIONS

This application claims priority to and the benefit of U.S.
provisional patent application No. 61/250,130, filed Oct. 9,
2009, the contents of which are incorporated herein by refer-
ence in their entirety.

FIELD OF THE INVENTION

The present invention relates generally to the identification
of chemical and biological materials, and more specifically to
systems and methods that detect and identify such materials
in a sample by applying spectral barcode inputs to multivari-
ate analysis tools and techniques.

BACKGROUND

Vibrational spectroscopic techniques such as Raman Spec-
troscopy in its various forms, including resonance Raman and
surface enhanced Raman spectroscopy (SERS), are well-
known for identifying samples, which contain unknown
materials or substances, ranging from simple molecular com-
pounds to more complex structures. Since different samples
exhibit unique vibrational spectra, harmful materials, for
example, can be identified by detection devices, such as
Raman or IR devices, without the need to physically contact
the material or add labeling chemical agents. This feature
permits law enforcement personnel, public health agencies,
medical personnel, and the military to identify contraband
narcotics, explosives, poisons, pathogens, and toxic chemi-
cals with minimal risk. In SERS, as a molecule approaches a
roughened metal surface, the intensity of its Raman spectra is
enhanced. Thus, SERS offers the advantage of sensitivity in
addition to the specificity of normal Raman or IR.

However, conventional spectral signal analysis techniques
often cannot distinguish spectra between closely-related
samples. Thus, identification errors can occur when spectro-
scopic signatures are produced for closely-related spectra.
For example, two different spectra may incorrectly appear to
be identical on a principle component analysis (PCA) plot.

BRIEF SUMMARY

An embodiment of the invention features a computer-
implemented method of identifying a material. A spectrum is
received. A barcode is generated from a sign of a second
derivative of the spectrum. Multivariate data analysis based
on the barcode is performed. The material is identified from
results of the multivariate data analysis based on the barcode.

Another embodiment of the invention features a system for
identifying a material. The system comprises a barcode con-
verter and a spectra analyzer. The barcode converter receives
a spectrum and generates a barcode based on a sign of a
second derivative of the spectrum. The spectra analyzer per-
forms multivariate analysis on the barcode.

Another embodiment of the invention features a computer
program product for testing software under development. The
computer program product comprises a computer readable
storage medium having computer readable program code
embodied therewith. The computer readable program code
comprises computer readable program code configured to
receive a spectrum. The computer readable program code
comprises computer readable program code configured to
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2

generate a barcode based on thr sign of the second derivative
of the spectrum. The computer readable program code com-
prises computer readable program code configured to per-
form a multivariate analysis in response to the barcode.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The above and further advantages of this invention may be
better understood by referring to the following description in
conjunction with the accompanying drawings, in which like
numerals indicate like structural elements and features in
various figures. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating the principles
of the invention.

FIG. 1is ablock diagram illustrating the components of an
identification system, in accordance with aspects of the inven-
tion.

FIG. 2 is a flow diagram of an embodiment of a process for
identifying a sample, in accordance with aspects of the inven-
tion.

FIG. 3 is aplot of SERS spectra of four members of a group
of closely related bacteria.

FIG. 4A is a principal component analysis (PCA) plot of
PC2 vs PC3 corresponding to the PCA clustering results for
the cereus group bacterial SERS spectra shown in FIG. 3
based on spectral intensities.

FIG. 4B is a dendrogram corresponding to HCA treatment
of PCA clustering results for the cereus group bacterial SERS
spectra shown in FIGS. 3 and 4A based on spectral intensities.

FIG. 4C is a PCA plot of PC2 vs PC3 corresponding to the
PCA clustering results for the cereus group bacterial SERS
spectra shown in FIG. 3 based on first derivative spectra.

FIG. 4D is a dendrogram corresponding to HCA treatment
of PCA clustering results for the cereus group bacterial SERS
spectra shown in FIGS. 3 and 4C based on first derivative
spectra.

FIG. 5A is a PCA plot of PC2 vs PC3 corresponding to the
PCA clustering results for the cereus group bacterial SERS
spectra shown in FIG. 3 based on second derivative spectra.

FIG. 5B is a dendrogram corresponding to HCA treatment
of PCA clustering results for the cereus group bacterial SERS
spectra shown in FIGS. 3 and 5A based on second derivative
spectra.

FIG. 5C is a PCA plot of PC2 vs PC3 corresponding to the
PCA clustering results for the cereus group bacterial SERS
spectra shown in FIG. 3 based on second derivative-based
barcodes.

FIG. 5D is a dendrogram corresponding to HCA treatment
of PCA clustering results for the cereus group bacterial SERS
spectra shown in FIGS. 3 and 5C based on second derivative-
based barcodes.

FIG. 5E is a discriminant function analysis (DFA) plot
corresponding to barcode treatment of cereus group SERS
data.

FIG. 5F is an HCA dendrogram corresponding to barcode
treatment of cereus group SERS data shown in FIG. 5E.

FIG. 6 is a graph illustrating averaged barcodes derived
from the SERS spectra of FIG. 3 for each bacteria sample.

FIG.7Aisa PCA plot for SERS spectra of Bacillus anthra-
cis Sterne, Mycobacterium fortuitum, Mycobacterium smeg-
matis and Salmonella typhimurium.

FIG. 7B is an HCA dendrogram corresponding to the PCA
plot shown in FIG. 7A.

FIG. 7C is a PCA plot for a second derivative barcode
representation of the SERS spectra of FIG. 7A.
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FIG. 7D is an HCA dendrogram corresponding to the PCA
plot shown in FIG. 7C.

FIG. 8A is a DFA plot of the cereus group SERS barcode
training set illustrating positive identification of a B. anthra-
cis Stern SERS spectral signature.

FIG. 8B is an dendrogram corresponding to the DFA scat-
ter plot shown in FIG. 8A.

FIG. 9A is a barcode-based PCA plot of an out-of-group
unknown.

FIG. 9B is a barcode-based DFA plot of the out-of-group
known of FIG. 9A.

FIG. 9C is a barcode-based PCA plot of another out-of-
group unknown.

FIG. 9D is a barcode-based DFA plot of the out-of-group
known of FIG. 9C.

FIG. 9E is a barcode-based PCA plot of another out-of-
group unknown.

FIG. 9F is a barcode-based DFA plot of the out-of-group
known of FIG. 9E.

FIG. 10A is a graph illustrating SERS and non-SERS bulk
spectra of S. typhimurium (ST) and E. coli (EC).

FIG.10B is a PCA plot of the corresponding first derivative
SERS and non-SERS spectra of S. syphimurium (ST) and E.
coli (EC).

FIG. 10C is an HCA dendrogram of SERS and non-SERS
PCA clusters resulting from the barcode treatment of the
spectra shown in FIG. 10A.

FIG.10D is a PCA barcode clustering of SERS and bulk ST
and EC spectra corresponding to FIGS. 11A-11C.

FIG. 11A is a graph illustrating SERS and non-SERS bulk
spectra of B. cereum (BC) and B. anthracis Sterne (BA
Sterne).

FIG.11Bis aPCA plot of the corresponding first derivative
SERS and non-SERS spectra of B. cereum (BC) and B.
anthracis Sterne (BA Sterne).

FIG. 11C is a HCA dendrogram of SERS and non-SERS
PCA clusters resulting from the barcode treatment of the
spectra shown in FIG. 11A.

FIG. 11D is a PCA barcode clustering of SERS and bulk
BC and BAS spectra corresponding to FIGS. 11A-11C.

DETAILED DESCRIPTION

In the following description, specific details are set forth
although it should be appreciated by one of ordinary skill that
the present invention can be practiced without at least some of
the details. In some instances, known features or processes
are not described in detail so as not to obscure the present
invention.

Multivariate analysis techniques are well-known for reduc-
ing a large number of variables to a smaller number of factors
for data modeling, and are therefore often used in many
standard data and spectral analysis packages. Multivariate
analysis techniques can include principal component analysis
(PCA), hierarchical cluster analysis (HCA), discriminant
function analysis (DFA), and linear discriminant analysis
(LDA). One important use of multivariate analysis tools and
techniques is to determine in-class or out-of-class member-
ship when relying on a spectrum, for example, a SERS spec-
trum, of an unknown material to determine its identity. Such
materials can include, but not be limited to, viruses, bacteria,
microorganisms, pathogens, or other chemical or biological
structures, or atomic, molecular, or ionic species thereof.
These tools and techniques when combined with library ref-
erences can form a powerful method for rapid spectroscopic-
based identification schemes.
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The input for these techniques based on spectroscopic
observations typically includes a set of vectors, wherein, in an
embodiment, each input vector corresponds to the observed
intensity as a function of frequency, e.g., a spectrum. In
another embodiment, the input vector corresponds to an
intensity as a function of mass. In another embodiment, the
input vector corresponds to an intensity as a function of time.
Accordingly, the present invention provides variations to
input vectors, and more particularly, includes barcodes as
input vectors based on each spectrum that is input to an
analyzer that performs one or more of the abovementioned
multivariate data analysis techniques. The systems and meth-
ods introduced by the present invention permit better cluster-
ing results to occur as measured by tightly clustered principle
component scores, as well as greater separation between clus-
ters of different samples. Hence, observed spectra may be
used for more reliable and more specific chemical/biological/
material identification.

Embodiments of the present invention feature a spectro-
scopic-based identification system and method that exploit
the enhanced sensitivity offered by SERS, as well as other
inputs such as Raman, IR, FTIR, or other spectroscopic
inputs, offer for chemical and/or biological material identifi-
cation, by optimizing robust spectral analysis protocols
employing reference library information. Embodiments of
the present invention can also be applied to analytical tech-
niques of identification relying on reproducible patterns of
input arrays, such as mass spectrometry, chromatography.
This is achieved by generating spectral barcodes from the
signs of the second derivatives of the spectra of the sample
material as a function of frequency; the second derivatives
highlighting the shape ofthe peaks and troughs of the spectra,
and derived from the observed spectral intensities as a func-
tion of frequency. Thus, each spectrum is reduced to a series
of binary values, which are based on whether the second
derivatives of the spectrum are greater than or less than zero,
i.e., whether the spectrum exhibits up or down curvatures as a
function of frequency.

The second derivative-based barcodes are provided as
input vectors to a spectra analyzer for cluster analysis such as
PCA, and/or DFA, LDA or HCA treatments. Cluster analysis
techniques performed on the sign of the second derivative
based input spectra can result in clusters that show higher
selectivity and improved reproducibility as compared to spec-
tral intensities, or first or second derivative inputs.

Although some embodiments herein refer to methods, it
will be appreciated by one skilled in the art that they may also
be embodied as a system or computer program product.
Accordingly, aspects of the present invention may take the
form of an entirely hardware embodiment, an entirely soft-
ware embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “processor,” “device,” or “system.” Furthermore, aspects
of the present invention may take the form of a computer
program product embodied in one or more computer readable
mediums having computer readable program code embodied
thereon.

Any combination of one or more computer readable medi-
ums may be utilized. The computer readable medium may be
a computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, or device, or any suitable combination of the fore-
going. More specific examples (a non-exhaustive list) of the
computer readable storage medium include the following: an
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electrical connection having one or more wires, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain, or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to CDs, DVDs, wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.
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The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowcharts and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

FIG. 1is ablock diagram illustrating the components of an
identification system 100, in accordance with aspects of the
invention. The identification system 100 comprises a barcode
converter 104, a spectra analyzer 106, and an optional noise
reduction filter 102.

During operation, a spectrum 10 of a material sample is
received by the barcode converter 110. The spectrum 10 can
be generated in a manner known to those of ordinary skill in
the art, such as Raman spectroscopy, resonance Raman spec-
troscopy, surface enhanced Raman spectroscopy (SERS),
infrared (IR), FTIR, mass spectrometry, or other technique
that analyzes reproducible inputs, and to measure the identity,
concentration, or amount of a given atomic, molecular, or
ionic species corresponding to the inputs. The spectrum 10
includes a plurality of spectral data points from which one or
more second derivatives can be determined. Normalized
spectra, first derivative spectra, or other types of spectra can
also be determined known to those of ordinary skill in the art.

The noise reduction filter 102 can include a Fourier trans-
form processor (not shown) that removes high-frequency
noise components from the observed spectrum 10.

The barcode converter 104 receives at least one second
derivative of the spectrum 10. The spectrum includes a plu-
rality of spectral data points, each having a spectral intensity
as a function of frequency. The barcode converter 104
includes a processor that generates a second derivative as a
function of frequency for each of the spectral data points from
its corresponding measured intensity. The barcode converter
104 generates a barcode based on the signs of the second
derivatives of the spectrum, shown for example in FIG. 6. In
an embodiment, a first barcode value can be assigned for a
positive second derivative, for example, binary value “1”
corresponding to an upward curvature, and a second barcode
value can be assigned for a negative second derivative, for
example, binary value “0” corresponding to a downward cur-
vature. In other embodiments, non-binary values can be
assigned to form a barcode.
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The barcode can be generated from one or more barcode
values. When barcodes are generated in this manner, each
sample can be uniquely represented by a frequency-depen-
dent binary identification, referred to as a barcode fingerprint.

The second derivative-based barcodes are output from the
barcode converter 104 as input vectors to the spectra analyzer
106, which performs barcode spectral data reduction. The
spectra analyzer 106 includes a clustering processor, which
executes multivariate clustering technique processes for clas-
sifying the spectra into correct clusters.

In an embodiment, the spectra analyzer 106 includes a
PCA clustering processor (not shown) for performing PCA
data reduction. The second derivative-based barcodes are
used as input vectors for the PCA data reduction. The prin-
ciple components (PCs) determined from the barcodes of the
unknowns can also be projected into a discriminant function
analysis (DFA) space for their identification.

The spectra analyzer 106 can produce and output PCA
plots, corresponding HCA dendrograms, or other relevant
graphs, plots, or relevant data to a display 130, other external
device such as an external processor or analyzer for process-
ing the output from the spectra analyzer 106. The display 130
can include a barcode PCA plot for closely related species or
strains, which illustrate clusters corresponding to each
chemically distinct sample type derived from the second
derivative barcode reduced spectra data that are well-defined
and separated from one another.

FIG. 2 is a flow diagram of an embodiment ofa process 200
for identifying a material in a sample, in accordance with
aspects of the invention.

According to the process 200, spectra are received (step
210) of the material to be identified. In preferred embodi-
ments, the spectra include second derivatives, also referred to
as second derivative spectra. The spectra can be received by
an identification system, such as the identification system 100
described with regard to FIG. 1. A Raman or FTIR spectrom-
eter, or other apparatus known to those of ordinary skill in the
art, can generate the spectra or input raw data arrays.

In an optional step, high-frequency noise components can
be removed from the spectra, for example, using a noise filter
that includes a Fourier transform.

One or more barcodes are generated (step 220) from the
received spectra. The barcodes are determined from the signs
of'the second derivatives of the spectra. In an embodiment, a
first barcode value can be assigned for a positive second
derivative, for example, binary value “1” corresponding to an
upward curvature, and a second barcode value can be
assigned for a negative second derivative, for example, binary
value “0” corresponding to a downward curvature.

A multivariate analysis is performed on the barcodes (step
230). In preferred embodiments, the multivariate analysis
includes at least one cluster analysis process, such as PCA.
Additional processes such as DFA, HCA, artificial neural
network or other multivariate data analysis treatments can
also be performed.

Clustering results (step 240) are output in response to the
multivariate analysis processes performed on the barcode.
The clustering results can be presented to a display or ana-
lyzer in the form of a PCA plot, HCA dendrogram, or other
analysis tool or technique known to those of ordinary skill in
the art.

The present inventive concepts can be used to provide
reliable identifications based on input raw data arrays, such as
spectroscopic signatures for closely-related raw input data,
for example spectra. These inventive concepts are particularly
useful for identification schemes based on vibrational spec-
troscopy. The barcodes generated according to the inventive
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concepts can provide enhanced identification performance
when Raman, FTIR, or SERS is used to distinguish spectra
which otherwise appear to be virtually identical via visual
inspection.

Thus, the present inventive concepts can be used in appli-
cations where there is a need to distinguish Raman, IR spec-
tra, mass spectra, chromatography data, or other observed
input data arrays between closely-related samples, and to
make an identification. Applications can include, but not be
limited to biosensing or bioanalysis, pharmaceuticals, moni-
toring manufacturing processes, quality control, forensics,
DNA sequencing, pathogen detection, medical diagnostics,
or food analysis.

One representative application is diagnostic microbiology,
for example, bacterial diagnostics, in which the rapid, reliable
identification of bacterial pathogens is required. The analysis
of corresponding SERS spectra for the detection and identi-
fication of bacterial cells with species and strain specificity
can be performed according to the present inventive concepts
described herein. For example, as shown in illustrative
examples described herein, the sign of the second derivative
of'a surface enhanced Raman spectroscopy (SERS) spectrum
can be obtained on in-situ grown gold (Au) cluster covered
Si0, substrates, and a barcode can be generated from the sign
of'the second derivative, as described in illustrative examples
herein. When a multivariate statistical analysis technique
such as principal component analysis (PCA) is performed
based on the barcode provided thereto as an input vector,
improved reproducibility and enhanced specificity can be
achieved. For example, the barcode-generated clustering
results can be systematically compared to those obtained
from corresponding spectral intensities, first derivatives, and
second derivatives for the SERS spectra of closely related
cereus group Bacillus strains, described in detail below. PCA
plots and corresponding hierarchical cluster analysis (HCA)
dendrograms can be generated and displayed that illustrate
the improved bacterial identification resulting from the bar-
code spectral data reduction approach according to the
present inventive concepts. As described in the following
illustrative example, the identification system and method
described herein is critical for the development of SERS
microscopy as a rapid, reagentless, portable diagnostic of
bacterial pathogens.

Itis well-known that the atomistic specificity of vibrational
Raman spectral signatures provides a powerful and effective
method for chemical identification of both simple molecular
species and as well as more complex biological structures.
This property, in conjunction with the Raman scattering
amplification resulting from the well-known surface
enhancement effect observed for molecules in close proxim-
ity to nanostructured metal surfaces, has often been exploited
for bioanalytical applications, such as glucose level monitor-
ing, viral cell identification, and cancer gene sequence sig-
naling.

A key component of any bacterial diagnostic platform is a
data reduction protocol for accurate species/strain identifica-
tion. Cluster based multivariate data analysis techniques have
been exploited previously to demonstrate the potential for
SERS and non-SERS Raman alike, as well as FTIR vibra-
tional spectra, to provide unique signatures for bacterial iden-
tification. These methods allow the reproducibility and the
specificity of a given spectroscopic assay to be quantified and
permit the determination of spectral classification within a
priori library reference groups. Typically, principal compo-
nent analysis (PCA) is employed to dramatically reduce the
dimensionality of the large spectral arrays, maximize the
spectral variances resulting from these input data arrays and
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provide a basis for subsequent supervised group identifica-
tion procedures. PCA plots (2D and 3D), and hierarchical
cluster analysis (HCA) dendrograms are convenient repre-
sentations showing naturally occurring group memberships
via these objective classification methods. Supervised tech-
niques, such as discriminant function analysis (DFA) or linear
discriminant analysis (LDA), which use PC clusters as inputs,
have frequently been employed for bacterial identification
schemes, particularly for non-SERS Raman analysis. Model
training techniques based on genetic algorithm or artificial
neural network approaches have been used much less fre-
quently for vibrational bacterial specificity analysis.

As a further additional step toward evaluating the perfor-
mance of the abovementioned substrate for use in a SERS
based or non-SERS based bacterial diagnostic platform, a
method as described herein provides for bacterial identifica-
tion via PCA, HCA or DFA multivariate statistical analyses.
The following illustrative example describes a second deriva-
tive-based clustering approach in accordance with embodi-
ments of the present inventive concepts, combined with the
reproducibility provided by the in situ grown Au nanoparticle
covered substrates, which results in excellent species and
strain level clusters for bacterial identification in a group of
closely related bacteria. Such a quantitative treatment also
allows the diagnostic capabilities resulting from different
SERS substrates to be compared.

In this example, analysis of the SERS spectra of members
of the cereus group of Bacillus bacteria, in particular B.
anthracis (Sterne and Ames), B. thuriengensis and B. cereus
is provided. In contrast to the often lethal consequences in
humans resulting from infections with B. anthracis, B. cereus
is a commonly found soil bacterium that can result in food
poisoning and B. thuringiensis produces a protein toxic to
insect larvae and is thus widely used as a biological pesticide.
The capability of distinguishing between avirulent B. anthra-
cis strains; B. anthracis Sterne, and B. anthracis Ames, and
the genetically closely related B. cereus and B. thuringiensis
species is demonstrated. Despite the range of pathological
effects manifested by these bacteria, genetic evidence has
been used to argue that these organisms constitute a single
species, attesting to the similarity and phylogenic proximity
of these species. Thus, the ability to rapidly distinguish
between these organisms, as well as between strains within
this group, is a minimum requirement for bacterial diagnostic
testing for the causative agent of anthrax and can serve as a
good test of the SERS specificity resulting from the Au nano-
structured substrates and the multivariate data processing
protocols employed here.

A clustering analysis is also performed to introduce a cru-
cial attribute of Raman spectroscopy, for example, SERS, as
compared to other optical approaches for bacterial identifica-
tion. Based on observed spectral differences, it has been dem-
onstrated that the spectral distinction between bacterial spe-
cies derived from FTIR and normal Raman spectra is
generally much smaller than the specificity obtained from
SERS vibrational signatures. This effect is fundamentally
attributable to the distance dependence of the mechanisms for
SERS activity. Thus, PC cluster bacterial identification meth-
ods based on SERS spectra can exhibit enhanced specificity,
as well as sensitivity, compared to FTIR or normal Raman
spectra fingerprinting schemes. This additional important
advantage of SERS for bacterial diagnostics is readily dem-
onstrated by use of the clustering analysis described here and
serves to highlight the effectiveness of SERS for microorgan-
ism detection and identification via optical approaches.

Embodiments of the present inventive concepts include the
use of bacterial strains, their sources and additional relevant
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genotypic descriptions. A summary of such bacterial strains
investigated by SERS is described in Table 1. The bacterial
strains are grown in ~15 mL of LB (Sigma) broth, harvested
during the log growth phase by centrifugation and washed
five times with deionized Millipore water. The resulting cell
pellet is resuspended in 0.25 mL of water and 1 pl, of the
resulting ~10°/mL bacterial suspension is pipeted directly
onto the SERS substrate for purposes of the data analysis
described herein. SERS measurements are made after about
two minutes when nearly all the water has evaporated. Signal
acquisition during this one to two minute period results in
variable SERS signal intensities due to bacterial mobility and
reduced bacteria-substrate surface interactions. In order to
obtain non-SERS Raman spectra of bulk bacterial samples,
bacteria can be placed on KBr plates.

TABLE 1
Species Strain ID Relevant Genotype
Bacillus thuringiensis ATCC 35646  Wild-type environmental
isolate
Bacillus cereus ADL#830 Strain T, wild-type

prototrophic

Bacillus anthracis Sterne pXO2~

Bacillus anthracis Ames 33 pXO1~pXO02~

Bacillus anthracis Ames 35 pXO2~

Bacillus licheniformis ATTC 9945 Wild-type environmental
isolate

Mycobacterium ATCC 35797  Wild-type strain 1717

smegmatis

Mycobacterium fortuitum ATCC 35754  TMC 1530; clinical isolate
from human sputum

Escherichia coli ATCC 12435 A lambda-derivative of

E. coli laboratory strain K-12
Wild-type isolated from
animal tissue

Salmonella typhimurium  ATCC 14028

All SERS spectra shown in this example were obtained
using the in-situ grown, aggregated Au nanoparticle covered
Si0, substrate. A two stage reduction of'a metal doped sol-gel
results in small (2-15 particles) aggregates of monodispersed
~80 nm Au nanoparticles covering the outer layer of ~1 mm?>
Si0, substrate. The slowest step in this production scheme is
the second reduction step in very dilute NaBH, which
requires about 24 hours for the in situ growth of the Au
nanoparticle clusters. The shelf life of these sol-gel based
substrates is currently in excess of 90 days. Thus, the SERS
substrate combines attributes of the chemically produced col-
loids which result in large enhancement factors (10*-10° per
bacterium) with solid state ease of use and reproducibility.

The spectra described in this example are acquired with a
RM-2000 Renishaw Raman microscope employing a 50x
objective and excited at 785 nm. SERS spectra are obtained
with incident laser powers in the 1-3 mw range in ~10 seconds
of illumination time. The observed spectra results from ~10-
20bacterial cells within the field of view (~100 um?). Spectral
resolution is set to 3 cm™", although the minimum width for an
observed bacterial spectral feature is 5 cm™ (FWHH). The
520 cm™! band of a silicon wafer was used for frequency
calibration. Non-SERS spectra of bacteria is acquired with 60
seconds of 300 mw of incident 785 nm power.

Initially, an automated curvature-based procedure can be
applied to eliminate spurious cosmic ray contributions to the
SERS spectral signatures. For purposes of bacterial identifi-
cation, all SERS spectra is subsequently Fourier filtered to
remove high frequency noise components from the observed
spectra. The multivariate data analysis is carried out with
MatLab™ software subroutines. Principal component analy-
sis (PCA) is performed on normalized spectra, first derivative
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spectra and second derivative spectra in the 500 cm™ to 1600
cm™ range. Input arrays are splined to 1 intensity value per
cm™'. Inanother cluster method, binary barcodes based on the
sign of the second derivative of the spectrum are generated as
input to the PCA clustering algorithms. A minimum value,
typically at ~10% of the maximum second derivative value,
can be used as a threshold for the zero (one) assignment. This
cutoff value can be determined empirically and used without
change throughout these studies. Mean centering the input
spectral data does not affect the outcome of the clustering
results described here. The PCA reduced data sets can be used
as inputs to hierarchical cluster analysis (HCA) procedures.
Both Ward’s algorithm and squared distances can be used to
evaluate the member dissimilarity for the HCA procedure.
HCA results were summarized by corresponding dendro-
grams. Dendrograms can be constructed using member dis-
tances directly in order to display the large dynamic range of
branching points resulting from the branching of the well
separated tightly packed groups. The resulting principal com-
ponents can be inputs to a discriminant function analysis
(DFA) as well. The Discriminant Partial Least Squares 2
(DPLS2) algorithm can be used in creating the discriminant
functions. Since the DFA space results from a rotation of the
selected PCA subspace, each DF is simply a linear combina-
tion of these inputed PCs. Only the PCs carrying the most
significant variance of a given data set, typically up to 98%, is
used in the DFA treatments discussed herein.

FIG. 3is agraphillustrating SERS spectra of four members
of'a group of bacteria. In particular, multiple SERS spectra of
four strains of the cereus group of Bacillus bacteria, B.
anthracis Sterne, B. anthracis Ames 33, B. cereus and B.
thuringiensis, in the 500 cm™ to 1600 cm™! range, normal-
ized by the largest spectral intensity of each spectrum, are
shown. The degree of spectral (intensity, frequency and band
shape) variability for a given species due to both SERS sub-
strate and the bacterial cell in homogeneities, is evident in
FIG. 3. Spectra for a given species is acquired on different in
situ grown Au nanoparticle covered SiO, substrates for a
given isolate. SERS spectra of bacteria on the gold nanopar-
ticle covered substrates can exhibit very similar and often
analogous spectral features, such as the strong bands at ~730
cm™, 960 cm™!, 1090 cm™*, and 1450 cm™". The pattern of
these vibrational bands is qualitatively similar in all the SERS
spectra of these closely related cereus group bacteria and
constitutes a rigorous test of multivariate data reduction
methods for species/strain specific bacterial diagnosis. The
SERS spectra of B. anthracis Sterne and B. cereus appear to
be nearly homologous while the B. thuringiensis and B.
anthracis Ames 33 SERS spectra appear to be similar. The
empirical differences between the two anthracis strains
(Ames 33 and Sterne) SERS spectra are more evident than
those between the SERS spectra of different species within
the set of spectral data shown in FIG. 3. Much of B. anthracis
virulence is extracellular and is controlled by genes on two
plasmids, pXO01, i.e., encoding the secreted proteins protec-
tive antigen, lethal factor end endema factor, and pX02, i.e.,
encoding the cell surface poly-D-glutamic acid capsule. As
summarized in Table 1, the two B. anthracis strains described
herein each contain different complements of the two viru-
lence plasmids.

A series of PCA plots and corresponding HCA dendro-
grams, resulting from different treatments of the cereus group
SERS spectra shown in FIG. 3 are compared in FIGS. 4A-4D
and 5A-5D. Each cluster ring in FIG. 4 represents a two
dimensional standard deviation. For all the PCA results
shown, PC3 vs. PC2 is plotted. This is generally the 2D
contour in PC space that exhibits the greatest cluster separa-
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tion at the highest level of significance. The percent variance
captured by each of these principal components is indicated
in parenthesis along the corresponding PCA axis. In addition,
for each clustered species, three two-dimensional Gaussians
are drawn centered on the average value of a clustered group.
Each resulting ellipse corresponds to a standard deviation for
the PCA values of that distribution. Each cluster ring repre-
sents a two dimensional standard deviation. These rings are a
representation of the reproducibility of the data and offer a
quantitative measure of the significance of the distance
between clusters of different species/strains. Such standard
deviation rings can be used as one measure of the diagnostic
specificity offered by different substrates or alternative mul-
tivariate clustering strategies.

As evident in the PC3 vs. PC2 plots shown in FIGS.
4A-4D, the PCA analysis based on the normalized spectral
intensities (FIG. 4A) or the first derivative (FIG. 4C) of the
SERS spectra of these four strains show well-separated dis-
tinct B. anthracis Sterne and B. cereus clusters, but B. anthra-
cis Ames 33 and B. thuringiensis are substantially over-
lapped. The corresponding distance based HCA dendrograms
(FIGS. 4B and 4D) convey this same assignment difficulty in
the grouping of the B. anthracis Ames 33 and B. thuringiensis
for the SERS spectra of the intensity and first derivative
spectra. Ames 33 and thuringiensis cannot be separately clas-
sified in these HCA dendrograms. As described above, within
this data set the two B. anthracis strains (Ames 33 and Sterne)
are judged to be more distinct than the B. anthracis Ames and
B. thuringiensis species on the basis of these SERS finger-
prints. The results imply that that the latter pair shares a
greater similarity of cell surface features than does the former
pair of strains.

In contrast, when the SERS spectra second derivatives,
which highlight the shape of the peaks and troughs of the
spectra, are used as input vectors for the correlation coeffi-
cients of the PCA treatment, improved cluster separation is
obtained for this group of species in the PC2 vs. PC3 plane, as
shown in FIG. 5A. Further clarity with regard to the correct
identification grouping of these spectra is evident in the cor-
responding HCA dendrogram (FIG. 5B) as well. Thus, the
shape of the peaks and valleys of this SERS signature can
offer a more bacteria-specific fingerprint than that due to
either the peak intensities or slopes of the spectral features
shown in FIG. 4.

Improved clustering results derived from the SERS bacte-
rial spectra are consistently obtained when second derivative-
based barcodes are used as input vectors for the PCA treat-
ment, for example, shown in FIG. 5C. As described above,
when barcodes are assigned on the basis of the second deriva-
tive sign, i.e. +1 for upward curvature, (positive second
derivatives) and 0 for downward curvature (negative second
derivatives), each species is represented by a frequency
dependent binary fingerprint. A threshold for zero, usually set
at about 10% of the maximum value of the second derivative,
is used to determine a minimum value for a 0 bit assignment
for this barcode. This threshold helps discriminate against
residual noise components.

FIG. 6 is a graph illustrating averaged barcodes derived
from the SERS spectra of FIG. 3 for each bacteria sample, in
accordance with aspects of the invention. In particular, FIG. 6
shows second derivative barcodes for the abovementioned
four Bacillus species of interest. For second derivatives
<0.007, the array spectral point is assigned a value of +1;
otherwise the array point is 0 for the shown barcode. Aver-
aged spectra are overlaid with the corresponding barcode.

As seen in FI1G. 6, averaged barcodes for each of the species
of interest here exhibit a unique SERS based signature. The
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resulting barcode PCA plot for these closely related Bacillus
strains is shown in FIG. 5C. PC clusters corresponding to
each of the four Cereus group bacteria derived from the
second derivative barcode reduced SERS spectra data are
well defined and separated from one another. The intragroup
distances are minimized and the intergroup separations are
maximized via this barcode PCA treatment relative to inten-
sity, first or second derivative-based PCA results, as shown in
the comparison between FIGS. 4A, 4C, 5A, and 5C. Further-
more, the two-dimensional Gaussian contours shown in FIG.
5C reveal that many standard deviations (>>10) separate the
four species in the barcode based PCA plot (FIG. 5C). In an
alternative display of the specificity afforded by this barcode
approach normalized spectra, normalized first and second
derivative spectra and barcodes of the four Bacillus strains
were subject to a PCA clustering treatment. In this normal-
ized data test the barcode-reduced SERS spectra are shown to
provide widely separated classification clusters at the highest
levels of significance as compared to comparably normalized
spectra or derivative spectra.

A dendrogram derived from HCA calculations (FIG. 5D)
also illustrates the success of this barcode approach as com-
pared to the clustering derived from intensity, first derivative
or second derivative-based spectra (FIGS. 4B, 4D, 5B, 5D).
Not only are all the spectra properly classified according to
species/strain in the barcode based HCA dendrogram (FIG.
5D), but the branching point for the members of a given
species/strain type consistently occurs at smaller dissimilar-
ity scores while the dissimilarity score is a maximum for the
different strains in this dendrogram as compared to the other
PCA derived dendrograms for this same initial set of SERS
spectra (FIGS. 4B, 4D, 5B, 5D). The HCA dedrograms given
here are based on distances in the PC3 vs. PC2 plane only.
However, more dimensions (up to the PC dimensionality)
could in principle be used to construct dendrograms for iden-
tification purposes. Using a convenient unsupervised strat-
egy, all the PCs weighted by their significance are used to
construct dendrograms for the data sets employed here. Due
to the relatively small number of groups (4) and the quality of
the PC3 vs. PC2 clustering results, the weighted PC dendro-
gram do not result in superior cluster differenctiation for the
data sets considered herein.

The PCA generated clusters can be employed in a super-
vised classification software program. The results of a dis-
criminant function analysis (DFA) based on PCs derived in
the barcode clustering procedure are shown in FIG. 5E. Only
the PCs of greatest significance were retained for this DF1 vs.
DF2 plot. For the data shown here, these discriminant func-
tions consisted of linear combinations of the first five PCs and
were dominated by the contribution of a single PC. Due to the
high quality of the unsupervised PCA results, only a very
modest improvement in the cluster grouping is seen in the
resulting DFA results. Species/strain cluster separation is
slightly larger in the DFA plot (FIG. 5E) than in the corre-
sponding PCA result (FIG. 5C) and the dissimilarity scores
are nearly all smaller in the HCA dendrograms derived from
the DFA results (FIG. 5F) as compared to the corresponding
PCA and/or HCA results (FIG. 5D).

The specificity and reproducibility that typically results
from the use of the barcode representation of the SERS bac-
terial data acquired on the gold nanoparticle covered sub-
strates is additionally demonstrated in FIG. 7. A PCA plot of
SERS spectra and the corresponding second derivative bar-
code representation of the SERS spectra are contrasted in this
figure for four bacterial species; M. fortuitum, M. smegmatis,
S. typhimurium and B. anthracis Sterne. The dramatically
improved clustering and interspecies cluster distance
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enhancement resulting from the use of the barcode treatment
of'the SERS data is evident in this figure (compare FIGS. 7A
and B with FIGS. 7C and D). These results and the more
extensively described Cereus group analysis described
above, are typical for the SERS bacterial spectra acquired on
the gold nanocluster covered SERS substrates and thus indi-
cate that a PCA/DFA scheme based on the barcode reduced
SERS signatures provides the best analysis protocol for bac-
terial identification, at least compared to the other input vec-
tor strategies described herein.

Given the high quality of the PCA-DFA plots based on the
second derivative sign, the identification of in-class member-
ship demonstrated with a leave-one-out strategy employing
the PCA or DFA vectors derived from the barcode data train-
ing set is virtually assured for the SERS data shown in FIG.
14. Two examples of positive identification using a B. anthra-
cis Ames 33 and a B. anthracis Sterne SERS spectrum are
demonstrated by the results shown in FIG. 8. DFA training
sets derived from the n-1 spectral signatures are given in
FIGS. 8A and B, wherein n is the total number of spectra in
FIG. 3. The above-described second derivative-based bar-
codes are used as input vectors for the PCA data reduction.
When the PCs determined from the barcodes of the unknowns
are projected into the DFA space they each fall in the correct
Bacillus anthracis strain cluster for their identification. Note
that the DFA plots are slightly different for these two
examples (FIGS. 8A and 8B) because the training sets differ
by one member.

A more rigorous test of this clustering based procedure for
bacterial identification can be the ability to discriminate
against out-of-class species or false positive bacterial classi-
fications. Avoiding such misclassifications is just as signifi-
cant for the success of an identification scheme as a correct
positive identification grouping. In FIG. 9, the ability of the
PCA and DFA cereus group clustering results discussed
above to discriminate are compared and contrasted against 3
different out-of-class unknowns: E. coli, B. licheniformis and
B. anthracis Ames 35. This group tests the ability of the
PCA/DFA clusters of B. anthracis Sterne, B. anthracis Ames
33, B. cereus and B. thuringiensis to demonstrate out-of-class
or non-members from another genus, the same genus and
another closely related strain. In FIGS. 9A, 9C, and 9E, the
PCA PC2vs. PC3 plots are shown resulting from inclusion of
each of these unknowns: E. coli, B. licheniformis and B.
anthracis Ames 35, respectively. In each case the unknown
does not find a match with any of the known clusters dis-
played. The unknowns are more than 10 standard deviations
away from any group cluster mean coordinates for these PCA
contours. Interestingly, the Ames 35 SERS spectrum has the
same PC3 value as Sterne but the same PC2 as Ames 33 (FIG.
9E). Ames 35 is a descendent of the Ames genotype but is
missing the same virulence plasmids as Sterne does (see
Table 1). The PCA SERS plot for this strain seems to reflect
these genetic factors.

In FIGS. 9B, 9D, and 9F, the results of projecting the PCs
for the unknown into the DFs generated by the training set
that does not include the unknown, are displayed in DF1 vs.
DF2 plots. The most significant observations is that the B.
licheniformis spectrum nearly clusters with the B. anthracis
Sterne grouping (FIG. 9D). The DFA vectors which are linear
combinations of the selected PCs, have been determined in
order to maximize the distance between different groups and
minimize the distance between intragroup members. In con-
trast, the unsupervised PCA treatment maximizes the vari-
ance between all the members of the input data set. Conse-
quently, the rotation of PCs that results in DFs, may
coincidently result in a linear combination of PCs that locates
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an unknown in an incorrect cluster. Clustering that is depen-
dent on supervised methods such as DFA in order to achieve
reliable specificity runs the risk of false positive identifica-
tions as shown here. Thus, unsupervised multivariate
approaches which result in well-clustered groupings seems to
offer the best chance for avoiding potential false positive
identifications.

Having established the specificity afforded by the barcode
reduction of SERS spectra for multivariate data analysis, this
approach can highlight an essential attribute of SERS for
microorganisms identification. Aside from the advantages
resulting from the Raman cross section enhancement, such as
reduced data collection time, single cell level sensitivity and
reduced incident laser power requirements, thus enabling
portable and remote (SERS) Raman detection instrumenta-
tion, a somewhat more subtle but important attribute for bac-
terial identification derives essentially from the distance and
orientation dependence of the SERS enhancement mecha-
nisms. As previously described, SERS spectra of £. coli and
S. typhimurium can be more spectrally distinct than their
corresponding nonSERS (bulk) Raman spectra based on
qualitative spectral comparison and first derivative difference
spectra. Non-SERS or bulk Raman spectra of bacterial spe-
cies often exhibit only very subtle spectral differences even
for bacteria from different genera although these distinction
can be discerned in PCA analysis.

The results of a PCA treatment of SERS and bulk Raman
signatures are displayed in FIGS. 10 and 11, which dramati-
cally illustrate the enhanced bacterial specificity afforded by
SERS vibrational signatures as compared to bulk Raman
data. A PC clustering analysis was carried out for bulk (non-
SERS) and SERS spectra of S. typhimurium and E. coli dis-
played in FIG. 10A. The corresponding first derivative spec-
tra were used as input vectors to the clustering algorithm
resulting in the PC2 vs. PC3 plot displayed in FIG. 10B.
When the first derivative spectra are used the SERS spectra
form separate clusters while the non-SERS spectra signifi-
cantly overlap. When the PCA of the second derivative bar-
codes is carried out for these two species, well-separated
clusters of S. typhimurium and E. coli SERS spectra are
obtained again but only slightly separated clusters corre-
sponding to the non-SERS (bulk) Raman signatures are evi-
dent (FIG. 10D). This same result is represented in the HCA
dendrogram (FIG. 10C) resulting from this barcode PCA
treatment. The branch point indicating discrimination
between the two groups of SERS spectra occurs at a much
larger dissimilarity score (~0.35) than that of the correspond-
ing bulk spectra (~0.025). The use of this multivariate data
analysis approach highlights how much more distinct the
SERS spectral signatures are compared to the normal bulk
Raman spectra.

The analogous results are shown in FIG. 11 for SERS and
non-SERS spectra of B. cereus and B. anthracis Sterne. As
discussed previously a broad fluorescent background is
observed in the 785 nm excited emission of the bulk bacillus
bacteria (FIG. 11A). The PCA plots clearly show how the
SERS spectra of these two closely related species form
widely separated clusters and properly identified groupings in
the HCA barcode-based dendrogram. In contrast, the non-
SERS spectra of B. cereus and B. anthracis Sterne are not well
separated and are incorrectly grouped in the HCA dendro-
gram resulting from the barcode PCA treatment. An addi-
tional contributing factor for the greater difficulty in HCA
classification may be the lower signal to noise of the non-
SERS spectra as compared to the SERS spectra due to the
large fluorescence background exclusively observed in the
bulk Raman emission.
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These results illustrate an important property of the SERS
optical approach for bacterial identification in addition to the
attributes of sensitivity, speed, ease of use and portability.
Due to the distance dependence of the SERS enhancement
mechanisms, only the outer layer of bacterial cells contributes
to these SERS spectra. Non-SERS Raman (and IR) vibra-
tional spectra of bacteria have spectral intensities generated
by all cellular components; the cytoplasm, where most of the
biomass resides, as well as the outer wall layers. Due to the
relative number density of these components the cytoplasm
contributions will significantly overwhelm the outer layer
components in these non-SERS spectra. That the outer layers
of bacteria are more chemically distinct than their corre-
sponding cytoplasm components and hence bacterial SERS
spectra more species/strain specific than non-SERS, appears
consistent with the view that closely related species, such as
the cereus group of Bacillus bacteria, have successfully
evolved to occupy different environmental niches while
maintaining nearly the same cytoplasmic composition. Thus,
they are most distinct where they interact with the outside
world and SERS spectral analysis fortuitously, is based on
these distinctions, which enhances its diagnostic specificity.

In order to fully exploit the sensitivity and selectivity that
SERS offers for bacterial identification rapid, robust spectral
analysis protocols employing reference library information
must be optimized. Multivariate procedures are required to
achieve accurate diagnosis and maximized selectivity based
on these vibrational fingerprints. PCA algorithms based on
the sign of the second derivative of bacterial SERS spectra
observed on the Au nanoparticle covered SiO, substrates
developed in this laboratory are shown to result in clusters
that show high selectivity and improved reproducibility as
compared to spectral intensity, first or second derivative-
based inputs. Both excellent species and strain specificity is
obtained with these SERS spectral based barcodes in PCA,
HCA or DFA clustering approaches. Furthermore, clustering
analysis allows the observed SERS bacterial reproducibility
and specificity achievable due to the sol-gel in situ grown gold
nanoparticle substrate and the data reduction methodology to
be compared with prior SERS studies as judged by the intra-
group and intergroup distances respectively. The second
derivative-based barcode analysis shown here provides
enhanced specificity and reproducibility compared to previ-
ously reported SERS bacterial multivariate analyses as
judged by these distance criteria.

The success of the second derivative barcodes argues firstly
that relative intensities and slowly varying background cor-
rections contribute non-essential variances to the data analy-
sis of these SERS spectra. The consistent trend we observe, as
the examples shown here demonstrate, is that clustering
improves as the input vectors to the bacterial PCA analysis
progress from SERS spectral intensities, to first derivative
spectra, second derivative spectra and finally to simply
upward (0/1) or downward (1/0) curvature as a function of
scattered frequency. The sign of the second derivative of the
spectrum is an extremely robust identification feature, subject
to minimal variability, for the SERS spectra of bacteria
acquired on the sol-gel substrate used here. First derivative
spectra avoid contributions resulting from fluctuations in
spectral background, but are still apparently sensitive to
SERS vibrational intensity fluctuations. Second derivative
spectra similarly minimizes background variability and tend
to further reduce sensitivity to intensity fluctuations as shown
here. Further bacterial SERS spectral reduction to the binary
second derivative representation (barcodes) eliminates even
further signal fluctuations due all the sources of intensity
variations contributing to these spectra.
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Developing SERS for rapid and reagentless bacterial iden-
tification by use of a reference library of bacterial spectral
data is inherently a supervised multivariate analysis tech-
nique since it uses a priori knowledge and thus, an inherently
supervised approach such as DFA would seem most appro-
priate for this classification procedure. However, the standard
DFA algorithms used to enhance the ratio of between group to
intragroup variance may inadvertently enhance false positive
rates, as demonstrated here. In other words, the rotation of
PCs that results in improved classification of identified
groups in DFA treatments does not necessarily result in DF
coordinates that maximize the variance for nongroup member
PCs. Unsupervised clustering algorithms, which just charac-
terize the variance in a given training set, are less sensitive to
such false positive classifications. Thus, the results described
herein indicate the potential for false positive bacterial diag-
nosis due to such simple supervised multivariate protocols.

The PCA analysis of the bacterial SERS and non-SERS
vibrational fingerprints of a given species results in clusters
which demonstrate the enhanced specificity as well as sensi-
tivity obtained from the SERS approach. The outer layers of
bacteria, which contribute the dominant character of SERS
signatures owing to the distance dependence of the SERS
enhancement mechanisms, are evidently more chemically
distinct than the cytoplasm. Characteristics such as drug
resistance, some of which depends on the presence of par-
ticular surface features, thus can be amenable to SERS iden-
tification even for very closely related strains.

The molecular origin of the bacterial SES fingerprints
observed is a modern challenge. For example, the generally
most intense vibrational band which is seen at about 730 cm™
is one of the most ubiquitous features of bacterial SERS
spectra. However, its molecular origin has variously been
assigned to adenosine ring stretch, or glucosidic ring in NAG/
NAM, components of the cell surface polysaccharide layer. A
large (~10 cm™") downsshift can be observed when Bacillus
anthracis is fed nitrogen-15 labeled culture broth consistent
with the assignment of'a C-N stretching feature to this band.
Establishing the molecular origins of these bands arising
from cell surface components can be useful for exploiting
SERS as a probe of cell surface structures in general and the
differences between closely related strains with correspond-
ing different virulence factors in particular.

While the invention has been shown and described with
reference to specific embodiments, it should be understood by
those skilled in the art that various changes in form and detail
may be made therein without departing from the spirit and
scope of the invention.

What is claimed is:

1. A computer-implemented method of identifying a mate-
rial, comprising:

receiving, by a computer, a spectrum;

generating from the spectrum a second derivative of the

spectrum that highlights a shape of peaks and troughs of
the spectrum;

generating, by a computer, a barcode from a sign of a

second derivative of the spectrum;

performing, by a computer, a multivariate data analysis

based on the barcode to identify a grouping of the spec-
trum; and

identifying, by a computer, the material from results of the

multivariate data analysis including the identification or
classification of the grouping of the spectrum based on
the barcode.

2. The computer-implemented method of claim 1, wherein
the sign of the second derivative is determined from the
observed intensity of the spectrum as a function of frequency.
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3. The computer-implemented method of claim 1, wherein
the barcode includes at least

one of a first barcode value assigned for a positive second

derivative and a second barcode value assigned for a
negative second derivative.

4. The computer-implemented method of claim 1, wherein
the spectrum is at least one of

a Raman, resonance Raman, neutron scattering, FTIR, and

IR spectrum.

5. The computer-implemented method of claim 1, wherein
the spectrum is a surface-enhanced Raman spectroscopy
(SERS) spectrum.

6. The computer-implemented method of claim 1, wherein
the spectrum is received raw input data results derived from at
least one of mass spectrometry and chromatography mea-
surements.

7. The computer-implemented method of claim 1, wherein
performing the multivariate analysis includes performing a
principal component analysis (PCA) clustering process based
on the sign of the second derivative of the spectrum.

8. The computer-implemented method of claim 1, wherein
the identified material is a chemical or biological agent.

9. The computer-implemented method of claim 1, wherein
atleastone ofa PCA plot and a HCA dendrogram is generated
in response to the multivariate analysis process.

10. The computer-implemented method of claim 1,
wherein performing the multivariate analysis comprises per-
forming at least one of a supervised clustering technique and
an unsupervised clustering technique.

11. A system for identifying a material, comprising:

abarcode converter that receives a spectrum and generates

a barcode based on a sign of a second derivative of the
spectrum, wherein the second derivative of the spectrum
highlights a shape of peaks and troughs of the spectrum;
and

a spectra analyzer that performs multivariate data analysis

on the barcode to identify a grouping of the spectrum,
and

a computer that identifies the material from results of the

multivariate data analysis including the identification or
classification of the grouping of the spectrum based on
the barcode.

12. The system of claim 11, wherein the spectra analyzer
includes a clustering processor, which executes clustering
technique processes for classifying the spectra into correct
clusters.

13. The system of claim 12, wherein the clustering proces-
sor performs a multivariate data analysis classification pro-
cess based on the sign of the second derivative of the spec-
trum.

14. The system of claim 11, wherein the barcode includes
at least one of a first barcode value assigned for a positive
second derivative and a second barcode value assigned for a
negative second derivative.

15. The system of claim 11, wherein the spectrum is at least
one of a Raman, resonance Raman, surface-enhanced Raman
spectroscopy (SERS), neutron scattering, FTIR, and IR spec-
trum.

16. The system of claim 11, wherein performing a multi-
variate analysis includes performing a principal component
analysis (PCA) clustering process based on the sign of the
second derivative of the spectrum.

17. The system of claim 11, wherein the identified material
is a chemical or biological agent.

18. The system of claim 11, wherein at least one of a PCA
plot and a HCA dendrogram is generated in response to the
multivariate analysis process.
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19. The system of claim 11, wherein performing the mul-
tivariate analysis comprises performing at least one of a
supervised clustering technique and an unsupervised cluster-
ing technique.

20



